Robot Vision and Image
Processing

Week #9
Prof. Ryan Kastner

Robot Vision

< The Scribbler has a small digital camera
+ Pictures taken by the camera 1s called image

<+ We can perform computation on 1images

e.g. Face Detection

Robot Vision

< The 1mage taken by a camera can serve as the eye
('76 Myro: default Q m
of the Robot . nw 1 3

pic = takePicture()
show(pic) .. \//

< In a color image, each pixel contains color
information which is made up of the amount of
red, green, and blue (also called, RGB) values

Values can be 1n the range [0..255]

= UCSD

Image

< A grayscale image contains only the level of gray

in a pixel
Takes a single byte between 0 (white) and 255 (black)
<+ How many bits in a byte?

< Image 1s just a 2-dimensional array of pixels

< Images obtained from the Scribbler have
256x192 (WxH)

+ 49,152 pixels

< Each pixel 1s 3 bytes. So, scribbler images are
147,456 bytes 1n size
<= UCSD

Pixels

< All digital cameras are sold by specifying the
number of megapixels

< A camera 1s referred by the size of the largest
image 1t can take

N g
7-—\ S

* The Scribbler camera,
has an 1image size of
147,456 bytes

* Itis only about 0.14
megapixels

= UCSD

Saving Images

< Electronic storage and transfer can be made by
compressing the data in the image

<+ Compressed Formats: JPEG, GIF, PNG etc.

< Scribbler supports JPEG and GIF

< Image Functions: Try this
picWidth = getWidth(pic)
picHeight = getHeight(pic)
print "Image WxH is", picWidth, "x", picHeight, “pixels.”

= UCSD

Saving Images

savePicture(pic, "OfficeScene.jpg")
savePicture(pic, "OfficeScene.gif")

< Loading from disk:
mySavedPicture = makePicture("OfficeScene.jpg")
show(mySavedPicture)

< Try this:
mySavedPicture = makePicture(pickAFile())

show(mySavedPicture)
Gives a navigational dialog box

+ Click on the picture, what do you get?

= UCSD

Robot Explorer

< Taking gray-scale picture 1s faster than taking a
color picture

< You can update the images faster and also use as a camera

< Try this:
joyStick()
foriinrange(25):
pic = takePicture("gray")
show(pic)

= UCSD

Movies

+ The savePicture() function allows make animated
GIF which 1n a browser shows several images
one after the other

picl = takePicture()

turnLeft(0.5,0.25) Can you write this program
pic2 = takePicture() using a for loop?
turnlLeft(0.5,0.25)

pic3 = takePicture()

turnLeft(0.5,0.25)

pic4 = takePicture()

listOfPictures = [picl, pic2, pic3, pic4]

savePicture(listOfPictures, "turningMovie.gif")
=UCSD

Making Pictures

< You can also make your own pictures

< Try this:
W=H-=100
newPic = makePicture(W, H, black)

show(newPic)

< Try this:
for x in range(W)
fory in range(H):
pixel = getPixel(newPic, x, y)
setColor(pixel, white)

repaint(newPic)

= UCSD

10

Selecting Colors

< You can
Set a color: setColor(pixel, white)

Create a new color 1f you know the RGB values of the
color: myRed = makeColor(255, 0, 0)

Visually select a color: myColor = pickAColor()

< The repaint command refreshes the displayed

1mage: for x in range(W) Do you see any problems?
foryinrange(H):
pixel = getPixel(newPic, x, y)
setColor(pixel, white)

repaint(newPic) y

= UCSD

Image Processing

<+ Way of taking existing images and transforming
them 1n interesting ways

< You access an individual pixel and 1its color
value, and transform it in any way you like

< Examples: Shrinking & Enlarging, Blurring &
Sharpening, Negative & Embossing and Object
Detection

12

= UCSD

Shrinking & Enlarging

< Write a program that will take an input 1image
and shrink 1t by a factor, say F

< For example: 1f the original 1mage 1s 30003000
pixels and we shrink 1t by a factor of 10, we
would end up with an image of 300x300 pixels

New pixel at x, y is a copy of the old pixel x*F, y*F

13

= UCSD

Shrinking & Enlarging '

def main():
read an 1image and display it
oldPic = makePicture(pickAFile())
show(myPic, "Before")

X = getWidth(oldPic)
Y = getHeight(oldPic)

Input the shrink factor and computer size of new image
F = int(ask("Enter the shrink factor."))

newx = X/F

newy = Y/F

create the new 1mage
newPic = makePicture(newx, newy)

for x in range(newx):
for y in range(newy):
setPixel(newPic, x, y, getPixel(myPic, x*F, y*F))
show(newPic, "After")

= UCSD

Image Processing

<+ How does Scribbler recognize a ball?

< Once 1t recognizes 1t, can 1t follow the ball
wherever 1t goes?

(7% Myro: Pink Ball g ™ ‘
“

(125, 158): (253,66,183)

= UCSD

Image Processing

< To 1dentify an object on an
1image, click on the 1image to get
the RGB values

< Set the remaining pixels to 0

< Thus the robot can identify the
object as in the i1mage shown
below

+ Change the threshold values to
get more refined 1dentification

7% Myro: Pink Ball EJ L

(125, 158): (253,66,183)

74 Myro: Filtered Image E] : 7

16

= UCSD

Image Processing

for pixel in getPixels(p):
r, g, b = getRGB(pixel)
if r> 200 and g < 100:
setRGB(pixel, (255, 255, 255))

else

setRGB(pixel, (0, 0, 0))

74 Myro: Pink Ball M= % Myro: Filtered mage =]) &3

(125, 158): (253,66,183)

= UCSD

17

Image Processing

< Once you have 1dentified the white i1mage in the
processes 1mage, you can find the position of the
object by taking the average of the x- locations

< What 1s the purpose of this function:
def ?(picture)
tot x =10
count = ()
for pixel in getPixels(p):
r, g, b = getRGB(pixel)
ifr>200and g < 100:
tot x = tot x + getX(pixel)
count = count + 1

return tot_x/count

= UCSD

18

Image Processing

< You can use the count value and make the robot

follow the movement of the ball

while timeTemaining(T):
take picture and locate the ball
pic = takePicture()
ballLocation = locateBall(pic)

if ballLocation <= 85:
turnLeft(cruiseSpeed)
elif ballLocation <= 170:

forward(cruiseSpeed)

else:

turnRight(cruiseSpeed) Here ballLocation

contains count value
19

= UCSD

